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ABSTRACT. A primeideal P of a commutative ring R with
identity is called strongly prime if aP and bR are comparable for
every a, b in R. If every prime ideal of R is strongly prime, then
R is called a pseudo-valuation ring. It is well-known that a
(valuation) chained overring of a Prufer domain R is of the form R
for some prime ideal P of R. In this paper, we show that this
statement is valid for a certain class of chained overrings of a
pseudo-valuation ring.

1. INTRODUCTION

Throughout this paper, all rings are commutative with
identity and if R is aring, then Z(R) denotes the set of

zerodivisors of R and T denotes the total quotient ring of R. We
sayaring A is anoverring of aring R if A is between R and T.
Recall that a ring R is called a chained ring if the principal ideals of
R are linearly ordered, that is, if for every a, b € R either alb or

b|a. It is well-known that a chained overring of a Prufer domain R
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is of the form R ( see [9, Theorem 65] ) for some prime ideal P of
R. In this paper, we show that this statement is still valid for

a certain class of chained overrings of a pseudo-valuation ring.
Recall from [5] that a prime ideal P of aring R is called a strongly
prime ideal if aP and bR are comparable for all a,beR If Ris
an integral domain, this is equivalent to the original definition of
strongly prime introduced by Hedstrom and Houston in [8]. If every
prime ideal of a ring R is strongly prime, we saythat R isa
pseudo-valuation ring, abbreviated a PVR. It is easy to see that a

PVR is quasilocal, see [5, Lemma 1].

2. RESULTS

We start with the following lemma.

Lemmai. Let R beaPVRandlet a,beR. If ac Z(R)
and b is a nonzerodivisor of R, then bla. In particular, if
c/d e T\R forsome c,de R, then ¢ is a nonzerodivisor of R
and therefore d/ceT.

Proof. Deny. Let M be the maximal ideal of R. Since M
is strongly prime and b does not divide a, we must have bM <
aR. Hence, b?= ac forsome ¢ in R, which is impossible since b?
is a nonzerodivisor of R and a e Z(R). Thus, our denial is invalid

and bla. ®

The following lemma is trivial, but it is needed in the proof of

our main result.
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Lemma2. Let R beaPVR andlet A bean overring of
R. Then Z(R) = Z(A).

Proof. Thisisclearby Lemmai. ®

Theorem 3. Let R be a PVR with maximal ideal M, and

let V be a chained overring of R with the maximal ideal N. If
P=N n R is differentfrom M, then V =R,.

Proof. ByLemma 2, Z(R) < P. Hence, if se R\P, then sis
a nonzerodivisorof R and s'=1/s € T. Now, forany s R\P,
we must have s’ eV, for otherwise s e N and so s e P. Thus,
R, < V. Now, we show that V ¢ R,. Since P is a nonmaximal
prime ideal of R, we note that R, is a chained ring by [5, Theorem
12]. Suppose thatthereisa veV and v isnotin R, Write
v=als forsome a,s e R. Since v isnot in R,, v e T\R.
Hence, a is anonzerodivisor of R by Lemma 1 and v'eT.
Since R, is a chained ring and v is notin R, we must have v'!i=
s/a € R,. Thus, we may assume a ¢ P. Since v' € R, and v is
notin R,, we must have s € P, for otherwise, v'=s/a wouldbea
unitin R, and v € R, which we assumed is not the case. Since
s e P,we musthave se N and sve N. But a=sve P, acontra-
diction. Thus, V c R,. Hence, V=R,. ®

It was shown in [5, Lemma 20] that if R is a PVR with
maximal ideal M and B is an overring of R containing an
element of the form 1/s for some nonzerodivisor s of M, then B

is a chained ring. In view of Theorem 3, now we can show that
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such an overring of R is of the form Ry for some prime ideal P
of R.

Corollary 4. Let R be a PVR with maximal ideal M, and B
be an overring of R containing an element of the form 1/s for
some nonzerodivisor s of M. Then B is a chained ring of the form
R, for some prime ideal P of R.

Proof. By [5, Lemma 20] B is a chained ring. Let N be the
maximal ideal of B. Since B contains an element of the form 1/s
for some nonzerodivisor s of M, sis notin N. Hence, NnR is
different from the maximal ideal of R. Thus, B=R, whére P =
Nn Rby Theorem3. W

It was shown in [2, Proposition 4.3] thatif P is a nonmaximal
strongly prime ideal of an integral domain R, then P: P is
valuation domain. Since P is divided (comparable to every
principal ideal of R) by [5, Lemma 1(a)] and nonmaximal, P : P = {x
€ T:xPcP} contains an element of the form 1/s for some nonunit

s € M\ P. Hence, by Corollary 4, P: P = Re. Thus, we have :

Corollary 5. Let P be a nonmaximal strongly prime ideal of

an integral domain R. Then P:P = Re is a valuation domain. ™

Recall that an ideal of R is called regular if it contains a

nonzerodivisor of R. If every regular ideal of R is generated by its
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set of nonzerodivisors, then R is called a Marot ring. We have the

following resuit.

Proposition 6. Let R be a PVR. Then:
(1) R is a Marotring.

(2) Z(R) isaprimeidealof R and T =R,
(3) HR =T, then T is achained ring.

Proof. (1). This is clear by Lermma 1.(2). Since the prime
ideals of R are linearly ordered by {5, Lemma 1(a)land Z(R) is
a union of prime ideals of R, Z(R) is a prime idealof R and
hence T =Ryg.(3). If R =T, then Z(R) is a nonmaximal ideal of

R. Hence, T = R, is achained ring by [5, Theorem 12]. ®

We say anoverring B of R is a valuation overring of R if
there is an ideal J of B such that foreach te T\B there is an

element re J such that rt € B\ J. See [9] for more information.

Proposition 7. Let R be a PVR which is not its own total
quotient ring, and let B be an overring of R. Then the following
are equivalent :

(1) B is a chained overring of R.
(2) B is a valuation overring of R.

Proof. There is nothing to prove if R =T, so we may assume
thatR # T. (1)==(2). This is clear by [9, Theorem 5.1]. (2)==(1).
Since T is a chained ring by Proposition 6(3) and Z(R) = Z(T) = B
by Lemma 2, B is a chained overring of R by [9, Theorem 23.2]. ®
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Now, we state the main result in this paper.

Theorem 8. Let R be a PVR with maximal ideal M. Then
the following are equivalent:
(1) Every overring of R is a PVR.
(2) Every chained overring of R other than M : M is of the form R,
for some nonmaximal prime ideal P of R.
(3) M: M is the integral closure of R in T.

Proof. There is nothing to prove if R = T, so we may assume
R=#T. Since M:M={xeT:xMcM } is a chained ring with
maximal ideal M by [5, Theorem 8], it is the only valuation overring
of R that has maximal ideal M (see [9, Theorem 5.1]). Hence
M : M is the only chained overring of R that has maximal ideal M
by Proposition 7. (1) «== (3). This is clear by [5, Theorem 21].
(1)==(2). Since every subring of M: M containing R is a PVR
with maximal ideal M by [7, Corollary 18Jand M : M is the only
chained overring of R thatcan have M as a maximal ideal, each
chained overring of R otherthan M : M contains an element of the
form 1/s where s is a nonzerodivisor of M and thus each is of
the form R, for some prime ideal P of R by Corollary 4.

(2) == (3). First, R is a Marot ring by Proposition 6. Thus, by [8,
Theorem 9.3], the integral closure of R in T is the intersection of
the valuation overrings of R. By Proposition 7, each valuation
overring of R is chained, so except possibly for M : M, each is of
the form R, for some prime ideal P of R. All such rings contain

M:M. Therefore , the integral closure of R in T is M: M. ™
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An immediate consequence of the above theorem is the

following corollary.

Corollary 9. Let R be a PVR with maximal ideal M and
integral closure R’ suchthat R’ + M : M. Then there exists a
chained overring W of Rsuchthat R cW ¢ M: M,and W is

not of the form R, for some prime ideal P of R.

Example 10. David F. Anderson provided us with a concrete
example of a PVR R that has a valuation overring which is not of
the form R, for some prime ideal P of R. Let R be the set of
real numbers and C be the set of complex numbers. Set V =
C(t) + XCHI[X]] is a valuation (chained) domain with maximal ideal
M=XCH[X]], and R=R + XCHIIX])] is a PVR with maximal
ideal M. Then W = Clt], + XC)[[x]] is a valuation (chained)
overring of R which is not of the form of Re for some prime
ideal P of R. Observethat R'= C + XCOHOIX) <« W c M:M=V.
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